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An integral representation for the parabolic cylinder functions is solved by Gaussian 
quadrature employing an algorithm due to Gordon for solution of the moment 
equations. This method provides the function U(a, x) for a range of the arguments a 
and x not previously accessible with the accuracy of the present work. 

1. INTRODUCTION 

In recent years there has been some interest shown in obtaining solutions to the 
Schroedinger equation appropriate to various problems by techniques of numerical 
integration [l, 2, 31. Of particular interest to us is the problem of solving coupled 
differential equations [4] for which Gordon [5] has recently developed a method 
involving a polynomial approximation to the “potential” function rather than to 
the “wavefunction” as is the case, for example, in the Numerov-Cooley technique 
[6]. This reference potential is chosen within each interval throughout the region 
of integration in such a way that the corresponding Schroedinger equation has 
two linearly independent exact solutions whose form depends on the degree of the 
approximating polynomial. For example, a constant reference potential corre- 
sponds to trigonometric solutions, a linear potential to Airy functions, a quadratic 
potential to parabolic cylinder functions, etc. The wavefunction associated with 
the Schroedinger equation containing the true potential over a given interval is an 
appropriately chosen linear combination of these reference solutions. Prerequisite 
to obtaining solutions for the problem in question, then, is the accurate calculation 
of the special functions comprising the reference solutions. 

Much of the attention has been focused on the linear reference potential, for 
which reference solutions are expressed in terms of the Airy functions [5]. A more 
accurate representation of the true potential would be an quadratic reference 
potential for which the parabolic cylinder functions serve as reference solutions. 
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As Gordon [7] has recently emphasized, while these functions may be calculated 
for small and large values of the arguments by power series and asymptotic 
methods [8], respectively, there are regions of the arguments for which no adequate 
solutions are available. In this paper we report a method for calculating one of the 
two linearly independent parabolic cylinder functions for a particular range of 
argument. The general approach is outlined in Section II. Some representative 
results with a discussion are included in Section III. 

II. THEORY 

The parabolic cylinder functions, or Weber functions, satisfy the differential 
equation 

Y”(X) = [(l/4) x2 + alAx>. (1) 
Linearly independent solutions to this equation, labeled U(a, x) and V(a, x), are 
linear combinations of the even and odd solutions obtained by the usual power 
series method. An integral representation [9] for U(a, x) may be written in the form 

,&l/4)22 

s 

m 

Ubx) = .p-'l/2)~[a + (l/2)] 
~(4 dz 

o (z" + x2)1'2 ' 

where the weight function p(z) is 

p(z) = e(-l/4)zaZa-(l/2)~(--a, z). (3) 

The moments of the weight functions are given as [IO] 

pk = 
s 

m x”p(z) dz = n-1/22-k/2r(k + a + 1/2)/r[(1/2)k + l/2]. (4) 
0 

Equation (2) is restricted to values of a > (-l/2) and Eq. (4) must have 
a + k > (-l/2). This second restriction allows a value of k = 0, since a must 
always exceed (- l/2), so that all moments & , k = 0, 1, 2,..., may be calculated 
from Eq. (4). 

In order that Eq. (2) be valid the denominator in the integral must be analytic 
and the weight function positive over the range of integration. The former is 
satisfied for positive z; the latter depends on the sign of U(-a, z) which is positive 
[ll] for allowable values of a less than about 1.8. One can therefore evaluate the 
integral in Eq. (2) by a method analogous to that described by Gordon [5] for the 
Airy functions, in which the integral is approximated as a sum 

&1/4)z2 Jb' 

w4 4 = xa-'1/2'~[a + (l/2)] igl [(zi(y2 ; x2p2 ' b = e, 0, (5) 
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where (b) denotes the even or odd approximant as defined in the algorithm 
described by Gordon [12] for solving the moment equations. The value of U(a, x) 
is taken to be the average of the even and odd approximants. 

Because the value of a allowed by this procedure has a lower bound at (- l/2), 
it is useful to obtain the derivative of the parabolic cylinder function so that 
recurrence relations [13] may be used to evaluate the function for values of a 
beyond this limit. Algebraic manipulation yields the equations: 

U(a - 1, x) = (1/2)X U(a, X) - U’(a, X), (6) 

U(a + 1, x) = -[a + WY[U’(a, x) + (1/2)x U(a, x)1. (7) 

These equations may then be substituted into another recurrence relation 

xU(u, x) - U(a - 1, x) + [Lz + (l/2)] U(a + 1, x) = 0 (8) 

to extend the possible values of a for which the function may be calculated. 
The method described above may conveniently be used to calculate values of the 

derivative. Differentiation of Eq. (2) with respect to x gives 

++1/4)22 

way X) = xa-'1/2'p[a + (l/2)] 

Note that the first integral in this expression is identical to that in Eq. (2), while 
the second integral differs only by the exponent in the denominator. This second 
integral still satisfies the criteria given earlier, since the weight function is unchanged 
and the denominator is an analytic function. These integrals can therefore be 
evaluated according to the method used for Eq. (2), and the calculation of the 
derivative is accomplished in the same range of a as the function. 

III. RESULTS AND DISCUSSION 

The method described above for calculating the parabolic cylinder function 
U(u, x) was programmed for the NTSU/IBM 360-50 computer, with all calcu- 
lations being carried out in double precision. Representative results are displayed 
in Tables I and II for a = -0.4 and a = $0.6, respectively, with x ranging from 
x = 0.2 to x = 16.0. For comparison we also show the values obtained from the 
National Bureau of Standards (NBS) tables [l I] wherever possible (the NBS tables 
only go to x = 5.0). The underlined values indicate the onset of good agreement 
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with the tabulated values in going from small to large X. Also shown are the 
derivatives U’(a, x), from which the entries in the columns labeled U(a - 1, x) 
and U(a + 1, x) were calculated via Eqs. (6) and (7), respectively. The errors listed 
in column 4 of each table are calculated as one-half the difference between the odd 
and even approximants to the function in Eq. (5). In accordance with the algorithm 
of Gordon [ 121, the integral representation in Eq. (2) is bounded above by the even 
approximant and below by the odd approximant, so that the error is expressed 
as one-half the difference between the upper and lower bounds. Note that this 
difference decreases as x becomes large for fixed a. 

As shown in Tables I and II, this method is not accurate for small values of the 
argument x because of the small x-dependent terms in the denominators of Eq. (5). 
Near the origin, the moments in the sum do not compensate for the small terms 
in the denominator, resulting in poor convergence. However, this is not a serious 
handicap because the power series expansions [8] give extremely accurate values of 
the function for small x, allowing one to supplement the present method with 
power-series solutions for these ranges of the argument. 

It was mentioned in Section II that the parabolic cylinder function U(-a, x) 
in the weight function (Eq. (3)) must be positive definite in order that Eq. (2) be 
valid, implying that a not exceed a value of about 1.8 [ 113. However, our experience 
has shown that for values of a greater than about 0.7 the results for U(a, x) become 
erratic. Essentially, this is due to the fact that the gamma function in the numerator 
of Eq. (4) becomes large for larger values of a; the corresponding moments pk 
are used in the form of products in the matrix formalism of Gordon’s algorithm 
and only the lower moments yield accurate results. In practice we were able to use 
the first five moments for a range of -0.5 < a < 0.8, and the results in Tables I 
and II were calculated in this way. 

The range of a for which good solutions are obtainable may be extended by use 
of the recurrence relations (Eq. (6) and (7)) since the derivative U’(a, X) may be 
calculated in the same manner as U(a, x). This may be seen from Eq. (9), where the 
weight function p(z) in the two integrals is the same as that in Eq. (2). Thus, a series 
approximation analogous to Eq. (5) may be employed for U’(a, x), enabling 
accurate values of U(a, x) to be calculated for - 1.5 < a < 1.8. The values of the 
derivatives as well as the recurrence values U(a + 1, x) and U(a - 1, X) are 
included in the tables. 

In principle, one could use the recurrence relations repeatedly to extend the 
range of a even further. However, one can see from Eq. (8) that the coefficients of 
U(a, X) and U(a + 1, x) would tend to magnify any erors in these functions, and 
in practice it is found that accurate solutions via the recurrence relations are not 
obtainable for a greatly extended range. 

The relationship between the values of a in the two tables is aII = a, + 1, 
enabling one to compare the recurrence relation method with the direct one. Thus, 
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for example, U(a + 1, X) for a = -0.4 (column 6 of Table I) should be the same 
as U(a, x) for a = 0.6 (column 2 of Table II). One can see that the agreement 
improves with increasing x; this is reasonable since the errors in the function and 
its derivative decrease for increasing x. 

TABLE III 

Comparison of Approximation Methods with Exact Calculations, U(-S, x) 

x 

Exact” 

U(-s, x) 

Standard Methodsb This Work 

2.5 0.209611 
2.6 0.184519 
2.7 0.161621 
2.8 0.140858 
2.9 0.122151 
3.0 0.105399 
3.1 0.904914 (-1) 
3.2 0.773047 (-1) 
3.3 0.657103 (-1) 
3.4 0.555762 (-1) 
3.5 0.467706 (-1) 
3.6 0.391639 (-1) 
3.1 0.326308 (-1) 
3.8 0.270518 (-1) 
3.9 0.223149 (-1) 
4.0 0.183156 (-1) 

0.209612 
0.184520 
0.161621 
0.140859 
0.122151 
0.105399 
0.904916(-l) 
0.773049 (-1) 

0.657104(-l) 
0.555763 (-1) 
0.467707 (-1) 

0.391640 (-1) 

0.326308 (-1) 
0.270519 (- 1) 
0.223150 (-1) 
0.183157 (-1) 

0.209611 
0.184519 
0.161621 
0.140858 
0.122151 
0.105399 
0.904913 (-1) 
0.773047 (-1) 
0.657102 (-1) 
0.555762(-l) 
0.467706 (-1) 
0.391639 (-1) 
0.326307 (-1) 
0.270518 (-1) 
0.223149 (-1) 
0.183156 (-1) 

a From the Hermite polynomials, Eq. (10). 
*Power series for x < 3; Asymptotic Method otherwise. 

One important feature of this method of calculation is its accuracy in the critical 
range where x is becoming too large for the use of power series and is not large 
enough for asymptotic methods. Table 111 shows a comparison of values of U(a, X) 
calculated by our method with those obtained from power series and the asymp- 
totic method given in Eq. (19.8.1) of Abramowitz and Stegun [8]. It has been our 
experience that the power series begins to diverge for values of x greater than 
about 3, and the asympytotic method must be used. We therefore show a range of x 
from 2.5-4.0 as illustrative of the problem. The value of a = -0.5 was chosen 
because one can calculate U(a, x) exactly via the relationship with the Hermite 
polynomials, Hn(x). In general, for integral values of n, 

U(-n - l/2, X) = 2-1~Zne-1~4x”H,(x/1/Z), (10) 
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and hence the values of U(-0.5, x) shown in the first column of Table III corre- 
spond to Eq. (10) with n = 0. The values of the parabolic cylinder functions for 
our method were obtained by use of the recurrence relations. One can see from the 
table that the new method is at least equal in accuracy, and in some cases superior, 
compared with the other approximation methods. 

In conclusion, this method has been useful in obtaining values of the parabolic 
cylinder function U(a, x) for a limited range in a and for large values of x, where 
this method fails, power-series solutions produce accurate results. More accurate 
results could be obtained for small x, if a larger number of moments could be 
calculated without overflowing the computer. For larger x values, the use of more 
moments would lead to less improvement. By using only five moments, the values 
obtained for large x are very accurate since the error values are extremely small. 
In fact, the Gaussian quadrature method should produce very accurate values 
for even larger x values than listed in Tables I and II. 

Perhaps the most serious limitation on this method is that it cannot be used for 
negative values of x. This could be remedied by the use of a similar integral 
representation for the other linearly independent solution, V(a, x), for then one 
could use relations [14] of the type 

7rV(u, x) = r[u + (1/2)][U(a, x) sin n-a + U(a, -x)1. (11) 

We are currently exploring this approach. 
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